鋰電池回收處理技術有哪些?
鋰離子電池由正極、負極、電解液、隔膜、集流體、外殼等部分組成。鋰電池回收處理必須徹底放電確保對人身沒有傷害后再進行拆解,除去外殼,分離電極正、負極材料、集流體、電解液等,然后再進行下一步的回收,鋰電池回收處理技術則包含了不同部分的材料拆解回收技術。
1. 鋰電池外殼的回收
鋰電池外殼有鋼殼(方型很少使用)、鋁殼、鍍鎳鐵殼(圓柱電池使用)、鋁塑膜(軟包裝)等,還有電池的蓋帽,即電池正負極的引出端。回收外殼前需對廢舊鋰電池進行放電預處理后方可拆解,拆解后的塑料及鐵外殼可以回收。通常有:機械粉碎與篩分法,即通過機械破碎、過篩、分選出外殼材料;手工拆解,考慮到對人體的傷害情況盡量不采用這種方法;低溫冷凍后拆解,該工藝技術非常環保,但只能回收部分金屬材料和鋰鹽,回收效率低,無法對塑料實現有效回收。
2. 正極材料的回收
鋰離子電池以含鋰的化合物作正極,只有鋰離子,無金屬鋰。通常為錳酸鋰、鈷酸鋰、磷酸鐵鋰、鎳鈷錳酸鋰等材料,目前大部分的鋰離子電池正極的活性物質仍采用鈷酸鋰,因鎳鈷錳酸鋰結合了錳酸鋰和鈷酸鋰兩者材料的優勢,吸引了眾多研究者的興趣,作為電動自行車和電動汽車的動力電池頗具潛力。
隨著這種不可再生礦產資源的耗竭,且正極材料占電池總成本的40%,如果將正極材料中的鈷、鎳、鋰等重金屬進行有效回收,變廢為寶,實現材料的循環利用,既可以緩解礦產資源危機又實現可持續發展,同時還將帶來巨大的經濟效益。
(1)活性物質與集流體的分離
首先得將正極活性物質與導電集流體鋁箔有效分離,才能實現正極材料的回收,目前常用的方法有:
①刮片。直接將正極材料從鋁箔上刮下來,該方法會將鋁箔集流體刮破,產生集流體碎屑,使正極活性物質與鋁箔混在一起難以分離。
②高溫焚燒。通過高溫分解去除有機黏結劑,分離鋰電池組成材料,使電池中的金屬及其化合物氧化、還原并分解,以蒸氣形式揮發后,再進行冷凝收集。
③有機溶劑溶解。依據有機物溶解有機物的原理,采用合適的有機溶劑溶解掉正極材料中的有機黏結劑聚偏氟乙烯( PVDF ),從而將活性物質從鋁箔上剝離下來。目前研究較多的是有機溶劑——N -甲基吡咯烷酮(NMP),實驗證明NMP在70℃時浸泡處理正極鈷鋰膜可將活性物質完全剝離,鋁箔的金屬形態不發生任何改變可直接回收,使用后的有機溶劑可以通過蒸餾的方法將黏結劑脫除實現循環使用,唯一的缺點是NM P價格太貴約3萬元/ t,高額的成本使其應用受到限制。
④電解剝離。采用電解工藝分離電池正極材料與鋁箔集流體。以廢鋰電池正極為陰極,鉛為陽極,溶有檸檬酸的稀硫酸溶液為電解液,在一定的電流密度下電解15 ~30 min,活性物質從鋁箔上脫落掉入溶液中,過濾得到電解液與電池渣。鈷在低酸度條件下其浸出率達到50%,電流效率達到70%以上。
(2)活性物質的回收
①酸浸出:將分離得到的正極活性物質在硫酸與過氧化氫的體系中浸出得到Co2+和Li +,然后將含Co2+和Li +的浸出液先用二(2-乙基己基)磷酸酯(P2O4)萃取劑除去其中的雜質離子,再用乙基己基磷酸單-2-乙基己酯(P5O7)萃取劑萃取分離水相中的鈷離子,得到的富鈷有機相。
②堿浸出:電解剝離正極活性物質時,表層的鋁會發生氧化而生成一層致密的氧化膜,與酸反應生成鋁離子而進入溶液中,而鋁離子對萃取劑具有毒性,故除鋁效果不理想的話直接對分離效果產生影響。故先采用先堿浸回收鋁后再酸浸回收鈷和鋰。堿浸回收鋁的最佳條件是:溫度90℃、10% 氫氧化鈉(NaOH)溶液,鋁的回收率達到96%;酸溶回收鈷、鋰的最佳條件是:溫度90℃、4 mol / L硫酸溶液、固—液比1∶ 8、反應時間100 min,鈷、鋰的浸出率達到92%。該方法可以回收廢舊鋰離子電池中有價金屬,工藝流程簡單,對環境無二次污染,具有一定的實用價值。
③采用生物質秸稈硫酸體系浸出電池渣,鈷的浸出率達到99%以上。且通過2級、3級浸出工藝,浸出液中的酸與有機污染物(COD)得到充分利用。對浸出的鈷采用草酸沉淀,制備出的電池材料具有較好的放電性能[7]。
④通過化學反應直接生成正極材料。上述幾種方法都是先將鋁、鈷分離出來,若要得到正極材料還需進行進一步的合成,工藝過程繁雜,成本高。如果在分離的過程中直接合成得到正極材料,則可以大大簡化生產工藝,提高經濟效益。廢極片中正極材料只是在使用過程中結構發生了劣化,只要在有效分離后進行調整就可以重新使用。直接綜合利用廢舊鋰離子電池的鋰、鎳、鈷、錳等有價金屬,不需對鎳、鈷、錳、鋰等元素進行分離,元素利用率高,節約原料成本。
3. 負極材料的回收
鋰電池負極材料的種類繁多:①金屬材料,如鋰金屬。②無機非金屬材料,主要是碳材料、硅材料及其他非金屬的復合材料。③過渡金屬氧化物。目前應用較多的是碳、石墨類和非石墨類碳材料。鈦酸鋰因具有非常優異的循環壽命、安全性和倍率性能,也可作為負極材料在電動汽車上使用,主要的缺點是會降低電池的能量密度。也有一些公司開發用錫合金作負極材料,但仍處于研究階段,應用較少。導電集流體使用厚度7 ~15μm的電解銅箔,故可以回收其中的銅(含量達35%左右),對于粘附于其上的碳粉,也可回收用作塑料、橡膠等的添加劑。因此,首先得對廢鋰電池負極組成材料進行有效分離,最大限度地實現廢鋰電池資源化利用。
通過錘振破碎有效實現碳粉與銅箔間的相互剝離,再根據顆粒間尺寸差和形狀差的振動過篩初步分離銅箔與碳粉。銅箔在大于0.250 mm 粒級范圍內富集而碳粉在小于0.125 m m 粒徑范圍內富集,根據粒徑不同可直接進行回收利用。
對于粒徑為0.125 ~0.250 mm的破碎顆粒,采用氣流分選法實現銅與碳粉間的有效分離。通過錘振破碎、振動篩分與氣流分選組合工藝可實現廢鋰電池負極材料中金屬銅與碳粉的資源化利用。
4. 有機電解液及隔膜的回收
對于數碼類廢舊鋰離子電池電解液大多不回收,通常采用火法將其燒掉;而作為動力電源的鋰離子電池其電解液占電池成本的15%左右,含有豐富的鋰離子,回收價值較高。而且目前常用的電解液一般都選用LiPF6的碳酸脂類有機溶液,在潮濕的空氣中,LiPF6會水反應生成有害氣體氟化氫,可見,有效回收電解液不僅可以減少有害氣體排放,還具有一定的經濟效益。鋰電池的隔膜帶有微孔結構,可以禁止電子通過而使鋰離子自由通過,一部分電解質分散于電極和隔膜的空隙中,故一并將隔膜進行回收處理。
電極、隔膜在合適的溶劑中浸泡一定時間后,電解質將完全脫出進入溶劑中。聚碳酸酯(PC)相對介電常數較大,有利于鋰鹽的溶解。童東革、賴瓊鈺、吉曉洋等將電解質和隔膜在PC溶劑中浸泡一段時間后,回收得到的電解質LiPF6可重新用于電池。